
Rauth Documentation
Release 0.7.2

Max Countryman

November 05, 2015

Contents

1 Installation 3

2 Usage 5

3 API Reference 7
3.1 API . 7

4 Upgrade Notes 23
4.1 Upgrading Rauth . 23
4.2 Rauth Changelog . 24

Python Module Index 27

i

ii

Rauth Documentation, Release 0.7.2

A simple Python OAuth 1.0/a, OAuth 2.0, and Ofly consumer library built on top of Requests.

Contents 1

https://github.com/kennethreitz/requests

Rauth Documentation, Release 0.7.2

2 Contents

CHAPTER 1

Installation

Install the module with one of the following commands:

$ pip install rauth

Or if you must:

$ easy_install rauth

3

Rauth Documentation, Release 0.7.2

4 Chapter 1. Installation

CHAPTER 2

Usage

If you want to check out the complete API documentation, go ahead.

The easiest way to get started is by setting up a service wrapper. To do so simply import the service container object:

from rauth import OAuth2Service

facebook = OAuth2Service(
client_id='440483442642551',
client_secret='cd54f1ace848fa2a7ac89a31ed9c1b61',
name='facebook',
authorize_url='https://graph.facebook.com/oauth/authorize',
access_token_url='https://graph.facebook.com/oauth/access_token',
base_url='https://graph.facebook.com/')

Using the service wrapper API we can obtain an access token after the authorization URL has been visited by the
client. First generate the authorization URL:

redirect_uri = 'https://www.facebook.com/connect/login_success.html'
params = {'scope': 'read_stream',

'response_type': 'code',
'redirect_uri': redirect_uri}

url = facebook.get_authorize_url(**params)

Once this URL has been visited and (presumably) the client authorizes the application an access token can be obtained:

the code should be returned upon the redirect from the authorize step,
be sure to use it here (hint: it's in the URL!)
session = facebook.get_auth_session(data={'code': 'foo',

'redirect_uri': redirect_uri})

print session.get('me').json()['username']

Here is an example using the OAuth 1.0/a service wrapper:

from rauth import OAuth1Service

twitter = OAuth1Service(
consumer_key='J8MoJG4bQ9gcmGh8H7XhMg',
consumer_secret='7WAscbSy65GmiVOvMU5EBYn5z80fhQkcFWSLMJJu4',
name='twitter',
access_token_url='https://api.twitter.com/oauth/access_token',
authorize_url='https://api.twitter.com/oauth/authorize',

5

Rauth Documentation, Release 0.7.2

request_token_url='https://api.twitter.com/oauth/request_token',
base_url='https://api.twitter.com/1/')

Now it’s possible to obtain request tokens via request_token = twitter.get_request_token(), generate au-
thorization URIs twitter.get_authorize_url(request_token), and finally obtain an authenticated session twit-
ter.get_auth_session(request_token, request_token_secret).

6 Chapter 2. Usage

CHAPTER 3

API Reference

Information regarding the consumer API.

3.1 API

The API is exposed via service wrappers, which provide convenient OAuth 1.0, 2.0, and Ofly flow methods as well as
session management.

Each service type has specialized Session objects, which may be used directly.

3.1.1 OAuth 1.0 Services

class rauth.OAuth1Service(consumer_key, consumer_secret, name=None, request_token_url=None,
access_token_url=None, authorize_url=None, base_url=None, ses-
sion_obj=None, signature_obj=None)

An OAuth 1.0/a Service container.

This class provides a wrapper around a specialized Requests’ Session object. Primarily this wrapper is used
to produce authenticated session objects. These may be used to make requests against OAuth 1.0/a endpoints.

You might intialize OAuth1Service something like this:

service = OAuth1Service(
name='example',
consumer_key='123',
consumer_secret='456',
request_token_url='http://example.com/request_token',
access_token_url='http://example.com/access_token',
authorize_url='http://example.com/authorize',
base_url='http://example.com/api')

Now the request token should be retrieved:

request_token, request_token_secret = service.get_request_token()

Differing Request Token Formats
Some services provide different formatting when returning tokens. For this reason the service wrapper provides
a special method get_raw_request_token(). This will return the unparsed response. At this point it’s
up to you to extract the necessary data.

7

Rauth Documentation, Release 0.7.2

It’s time to access the authorize URI and direct the client to authorize requests on their behalf. This URI is
retrieved as follows:

authorize_url = service.get_authorize_url(request_token)

Once the client has authorized the request it is now possible to retrieve an access token. Do so as follows:

session = service.get_auth_session(request_token, request_token_secret)

Differing Access Token Formats
Some services provide different formatting when returning tokens. For this reason the service wrapper provides
a special method get_raw_access_token(). This will return the unparsed response. At this point it’s up
to you to extract the necessary data.

Finally we have an authenticated session and are ready to make requests against OAuth 1.0/a endpoints. Because
Rauth is a wrapper around Requests, the same API you would use with Requests is exposed and expected:

r = session.get('some/resource/', params={'format': 'json'})
print r.json()

Parameters

• consumer_key (str) – Client consumer key, required for signing.

• consumer_secret (str) – Client consumer secret, required for signing.

• name (str) – The service name, defaults to None.

• request_token_url (str) – Request token endpoint, defaults to None.

• access_token_url (str) – Access token endpoint, defaults to None.

• authorize_url (str) – Authorize endpoint, defaults to None.

• base_url (str) – A base URL from which to construct requests, defaults to None.

• session_obj (Session) – Object used to construct sessions with, defaults to
rauth.OAuth1Session

• signature_obj (SignatureMethod) – Object used to construct signatures with, de-
faults to rauth.oauth.HmacSha1Signature

consumer_key = None
Client credentials.

get_access_token(request_token, request_token_secret, method=’GET’, de-
coder=<function parse_utf8_qsl>, key_token=’oauth_token’,
key_token_secret=’oauth_token_secret’, **kwargs)

Returns an access token pair.

Parameters

• request_token (str) – The request token as returned by get_request_token().

• request_token_secret (str) – The request token secret as returned by
get_request_token().

• method (str) – A string representation of the HTTP method to be used, defaults to GET.

• decoder (func) – A function used to parse the Response content. Should return a dictio-
nary.

8 Chapter 3. API Reference

Rauth Documentation, Release 0.7.2

• key_token – The key the access token will be decoded by, defaults to ‘oauth_token’.

• key_token_secret – The key the access token will be decoded by, defaults to
‘oauth_token_secret’.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_auth_session(request_token, request_token_secret, method=’GET’, **kwargs)
Gets an access token, intializes a new authenticated session with the access token. Returns an instance of
session_obj.

Parameters

• request_token (str) – The request token as returned by get_request_token().

• request_token_secret (str) – The request token secret as returned by
get_request_token().

• method (str) – A string representation of the HTTP method to be used, defaults to GET.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_authorize_url(request_token, **params)
Returns a formatted authorize URL.

Parameters

• request_token (str) – The request token as returned by get_request_token.

• **params (dict) – Additional keyworded arguments to be added to the request querys-
tring.

get_raw_access_token(request_token, request_token_secret, method=’GET’, **kwargs)
Returns a Requests’ response over the rauth.OAuth1Service.access_token_url.

Use this if your endpoint if you need the full Response object.

Parameters

• request_token (str) – The request token as returned by get_request_token().

• request_token_secret (str) – The request token secret as returned by
get_request_token().

• method (str) – A string representation of the HTTP method to be used, defaults to GET.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_raw_request_token(method=’GET’, **kwargs)
Returns a Requests’ response over the rauth.OAuth1Service.request_token_url.

Use this if your endpoint if you need the full Response object.

Parameters

• method (str) – A string representation of the HTTP method to be used, defaults to GET.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_request_token(method=’GET’, decoder=<function parse_utf8_qsl>,
key_token=’oauth_token’, key_token_secret=’oauth_token_secret’,
**kwargs)

Return a request token pair.

Parameters

• method (str) – A string representation of the HTTP method to be used, defaults to GET.

3.1. API 9

Rauth Documentation, Release 0.7.2

• decoder (func) – A function used to parse the Response content. Should return a dictio-
nary.

• key_token – The key the access token will be decoded by, defaults to ‘oauth_token’.

• key_token_secret – The key the access token will be decoded by, defaults to
‘oauth_token_secret’.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_session(token=None, signature=None)
If provided a token parameter, tries to retrieve a stored rauth.OAuth1Session instance. Other-
wise generates a new session instance with the rauth.OAuth1Service.consumer_key and
rauth.OAuth1Service.consumer_secret stored on the rauth.OAuth1Service instance.

Parameters token (tuple) – A tuple of strings with which to memoize the session object in-
stance.

request_token_response = None
Request and access token responses.

request_token_url = None
Authorization endpoints.

session_obj = None
Object used to construct sessions with.

signature_obj = None
Object used to construct signatures with.

3.1.2 OAuth 2.0 Services

class rauth.OAuth2Service(client_id, client_secret, name=None, access_token_url=None, autho-
rize_url=None, base_url=None, session_obj=None)

An OAuth 2.0 Service container.

This class provides a wrapper around a specialized Requests’ Session object. Primarily this wrapper is used
for producing authenticated session objects which are used to make requests against OAuth 2.0 endpoints.

You might intialize OAuth2Service something like this:

service = OAuth2Service(
name='example',
client_id='123',
client_secret='456',
access_token_url='https://example.com/token',
authorize_url='https://example.com/authorize',
base_url='https://example.com/api/')

Given the simplicity of OAuth 2.0 now this object service can be used to retrieve an authenticated session in two
simple steps:

the return URL is used to validate the request
params = {'redirect_uri': 'http://example.com/',

'response_type': 'code'}
url = service.get_authorize_url(**params)

once the above URL is consumed by a client we can ask for an access
token. note that the code is retrieved from the redirect URL above,
as set by the provider
data = {'code': 'foobar',

10 Chapter 3. API Reference

Rauth Documentation, Release 0.7.2

'grant_type': 'authorization_code',
'redirect_uri': 'http://example.com/'}

session = service.get_auth_session(data=data)

Now that we have retrieved a session, we may make requests against the OAuth 2.0 provider’s endpoints. As
much as possible the Requests’ API is preserved and you may make requests using the same parameters you
would using Requests:

r = session.get('foo', params={'format': 'json'})
print r.json()

Parameters

• client_id (str) – Client id.

• client_secret (str) – Client secret.

• name (str) – The service name, defaults to None.

• access_token_url (str) – Access token endpoint, defaults to None.

• authorize_url (str) – Authorize endpoint, defaults to None.

• base_url (str) – A base URL from which to construct requests, defaults to None.

• session_obj (rauth.Session) – Object used to construct sessions with, defaults to
OAuth2Session

access_token_response = None
Access token response.

access_token_url = None
The provider’s access token URL.

client_id = None
Client credentials.

get_access_token(method=’POST’, decoder=<function parse_utf8_qsl>, key=’access_token’,
**kwargs)

Returns an access token.

Parameters

• method (str) – A string representation of the HTTP method to be used, defaults to POST.

• decoder (func) – A function used to parse the Response content. Should return a dictio-
nary.

• key – The key the access token will be decoded by, defaults to ‘access_token’.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_auth_session(method=’POST’, **kwargs)
Gets an access token, intializes a new authenticated session with the access token. Returns an instance of
session_obj.

Parameters

• method (str) – A string representation of the HTTP method to be used, defaults to POST.

• **kwargs (dict) – Optional arguments. Same as Requests.

3.1. API 11

Rauth Documentation, Release 0.7.2

get_authorize_url(**params)
Returns a formatted authorize URL.

Parameters **params (dict) – Additional keyworded arguments to be added to the URL
querystring.

get_raw_access_token(method=’POST’, **kwargs)
Returns a Requests’ response over the OAuth2Service.access_token_url.

Use this if your endpoint if you need the full Response object.

Parameters

• method (str) – A string representation of the HTTP method to be used, defaults to POST.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_session(token=None)
If provided, the token parameter is used to initialize an authenticated session, otherwise an unauthenticated
session object is generated. Returns an instance of session_obj..

Parameters token (str) – A token with which to initilize the session.

session_obj = None
Object used to construct sessions with.

3.1.3 Ofly Services

class rauth.OflyService(app_id, app_secret, name=None, authorize_url=None, base_url=None,
user_id=None, session_obj=None)

An Ofly Service container.

This class wraps an Ofly service i.e., Shutterfly. The process is similar to that of OAuth 1.0 but simplified.

You might intialize OflyService something like this:

service = OflyService(name='example',
app_id='123',
app_secret='456',
authorize_url='http://example.com/authorize')

A signed authorize URL is then produced via calling service.get_authorize_url. Once this has been visited by
the client and assuming the client authorizes the request.

Normal API calls can now be made using a session instance. Retrieve the authenticated session like so:

session = service.get_auth_session('foo')

now we can make regular Requests' calls
r = session.get('bar')

Parameters

• app_id (str) – The oFlyAppId, i.e. “application ID”.

• app_secret (str) – The oFlyAppSecret, i.e. “shared secret”.

• name (str) – The service name, defaults to None.

• authorize_url (str) – Authorize endpoint, defaults to None.

• base_url (str) – A base URL from which to construct requests, defaults to None.

12 Chapter 3. API Reference

Rauth Documentation, Release 0.7.2

• user_id (str) – The oflyUserid, defaults to None. Note: this is required for Ofly requests,
retrieved via authorize URL.

• session_obj (rauth.Session) – Object used to construct sessions with, defaults to
rauth.OflySession

app_id = None
Client credentials.

get_auth_session(user_id, **kwargs)
Intializes a new authenticated session with user_id as oFlyUserid. Returns an instance of session_obj.

Parameters

• user_id (str) – The oflyUserid, defaults to None.

• **kwargs (dict) – Optional arguments. Same as Requests.

get_authorize_url(**params)
Returns a formatted authorize URL.

Parameters **params (dict) – Additional keyworded arguments to be added to the request
querystring.

get_session(token)
The token parameter should be oFlyUserid. This is used to initialize an authenticated session instance.
Returns an instance of session_obj.

Parameters token (str) – A token with which to initialize the session with, e.g.
OflyService.user_id.

session_obj = None
Object used to construct sessions with.

user_id = None
The oflyUserid.

3.1.4 OAuth 1.0 Sessions

class rauth.OAuth1Session(consumer_key, consumer_secret, access_token=None, ac-
cess_token_secret=None, signature=None, service=None)

A specialized Session object, wrapping OAuth 1.0/a logic.

This object is utilized by the OAuth1Service wrapper but can be used independently of that infrastructure.
Essentially this is a loose wrapping around the standard Requests codepath. State may be tracked at this layer,
especially if the instance is kept around and tracked via some unique identifier, e.g. access tokens. Things
like request cookies will be preserved between requests and in fact all functionality provided by a Requests’
Session object should be exposed here.

If you were to use this object by itself you could do so by instantiating it like this:

session = OAuth1Session('123',
'456',
access_token='321',
access_token_secret='654')

You now have a session object which can be used to make requests exactly as you would with a normal Requests’
Session instance. This anticipates that the standard OAuth 1.0/a flow will be modeled outside of the scope of
this class. In other words, if the fully qualified flow is useful to you then this object probably need not be used
directly, instead consider using OAuth1Service.

3.1. API 13

Rauth Documentation, Release 0.7.2

Once the session object is setup, you may start making requests:

r = session.get('http://example/com/api/resource',
params={'format': 'json'})

print r.json()

Parameters

• consumer_key (str) – Client consumer key.

• consumer_secret (str) – Client consumer secret.

• access_token (str) – Access token, defaults to None.

• access_token_secret (str) – Access token secret, defaults to None.

• signature (rauth.oauth.Signature) – A signature producing object, defaults to
rauth.oauth.HmacSha1Signature.

• service (rauth.Service) – A back reference to the service wrapper, defaults to None.

access_token = None
Access token credentials.

close()
Closes all adapters and as such the session

consumer_key = None
Client credentials.

delete(url, **kwargs)
Sends a DELETE request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get(url, **kwargs)
Sends a GET request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get_adapter(url)
Returns the appropriate connnection adapter for the given URL.

head(url, **kwargs)
Sends a HEAD request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

merge_environment_settings(url, proxies, stream, verify, cert)
Check the environment and merge it with some settings.

14 Chapter 3. API Reference

Rauth Documentation, Release 0.7.2

mount(prefix, adapter)
Registers a connection adapter to a prefix.

Adapters are sorted in descending order by key length.

options(url, **kwargs)
Sends a OPTIONS request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

patch(url, data=None, **kwargs)
Sends a PATCH request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

post(url, data=None, json=None, **kwargs)
Sends a POST request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• json – (optional) json to send in the body of the Request.

• **kwargs – Optional arguments that request takes.

prepare_request(request)
Constructs a PreparedRequest for transmission and returns it. The PreparedRequest has settings
merged from the Request instance and those of the Session.

Parameters request – Request instance to prepare with this session’s settings.

put(url, data=None, **kwargs)
Sends a PUT request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

rebuild_auth(prepared_request, response)
When being redirected we may want to strip authentication from the request to avoid leaking credentials.
This method intelligently removes and reapplies authentication where possible to avoid credential loss.

rebuild_proxies(prepared_request, proxies)
This method re-evaluates the proxy configuration by considering the environment variables. If we are
redirected to a URL covered by NO_PROXY, we strip the proxy configuration. Otherwise, we set missing
proxy keys for this URL (in case they were stripped by a previous redirect).

3.1. API 15

Rauth Documentation, Release 0.7.2

This method also replaces the Proxy-Authorization header where necessary.

request(method, url, header_auth=False, realm=’‘, **req_kwargs)
A loose wrapper around Requests’ Session which injects OAuth 1.0/a parameters.

Parameters

• method (str) – A string representation of the HTTP method to be used.

• url (str) – The resource to be requested.

• header_auth (bool) – Authentication via header, defaults to False.

• realm (str) – The auth header realm, defaults to "".

• **req_kwargs (dict) – Keyworded args to be passed down to Requests.

resolve_redirects(resp, req, stream=False, timeout=None, verify=True, cert=None, prox-
ies=None, **adapter_kwargs)

Receives a Response. Returns a generator of Responses.

send(request, **kwargs)
Send a given PreparedRequest.

signature = None
Signing method.

3.1.5 OAuth 2.0 Sessions

class rauth.OAuth2Session(client_id=None, client_secret=None, access_token=None, service=None,
access_token_key=None)

A specialized Session object, wrapping OAuth 2.0 logic.

This object is utilized by the OAuth2Service wrapper but can be used independently of that infrastructure.
Essentially this is a loose wrapping around the standard Requests codepath. State may be tracked at this layer,
especially if the instance is kept around and tracked via some unique identifier, e.g. access token. Things
like request cookies will be preserved between requests and in fact all functionality provided by a Requests’
Session object should be exposed here.

If you were to use this object by itself you could do so by instantiating it like this:

session = OAuth2Session('123', '456', access_token='321')

You now have a session object which can be used to make requests exactly as you would with a normal Requests
Session instance. This anticipates that the standard OAuth 2.0 flow will be modeled outside of the scope of
this class. In other words, if the fully qualified flow is useful to you then this object probably need not be used
directly, instead consider using OAuth2Service.

Once the session object is setup, you may start making requests:

r = session.get('https://example/com/api/resource',
params={'format': 'json'})

print r.json()

Parameters

• client_id (str) – Client id, defaults to None.

• client_secret (str) – Client secret, defaults to None

• access_token (str) – Access token, defaults to None.

• access_token_key (str) – The name of the access token key, defaults to ‘access_token’.

16 Chapter 3. API Reference

Rauth Documentation, Release 0.7.2

• service (rauth.Service) – A back reference to the service wrapper, defaults to None.

• access_token_key – The name of the access token key, defaults to ‘access_token’.

access_token = None
Access token.

access_token_key = None
Access token key, e.g. ‘access_token’.

client_id = None
Client credentials.

close()
Closes all adapters and as such the session

delete(url, **kwargs)
Sends a DELETE request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get(url, **kwargs)
Sends a GET request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get_adapter(url)
Returns the appropriate connnection adapter for the given URL.

head(url, **kwargs)
Sends a HEAD request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

merge_environment_settings(url, proxies, stream, verify, cert)
Check the environment and merge it with some settings.

mount(prefix, adapter)
Registers a connection adapter to a prefix.

Adapters are sorted in descending order by key length.

options(url, **kwargs)
Sends a OPTIONS request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

patch(url, data=None, **kwargs)
Sends a PATCH request. Returns Response object.

Parameters

3.1. API 17

Rauth Documentation, Release 0.7.2

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

post(url, data=None, json=None, **kwargs)
Sends a POST request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• json – (optional) json to send in the body of the Request.

• **kwargs – Optional arguments that request takes.

prepare_request(request)
Constructs a PreparedRequest for transmission and returns it. The PreparedRequest has settings
merged from the Request instance and those of the Session.

Parameters request – Request instance to prepare with this session’s settings.

put(url, data=None, **kwargs)
Sends a PUT request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

rebuild_auth(prepared_request, response)
When being redirected we may want to strip authentication from the request to avoid leaking credentials.
This method intelligently removes and reapplies authentication where possible to avoid credential loss.

rebuild_proxies(prepared_request, proxies)
This method re-evaluates the proxy configuration by considering the environment variables. If we are
redirected to a URL covered by NO_PROXY, we strip the proxy configuration. Otherwise, we set missing
proxy keys for this URL (in case they were stripped by a previous redirect).

This method also replaces the Proxy-Authorization header where necessary.

request(method, url, bearer_auth=True, **req_kwargs)
A loose wrapper around Requests’ Session which injects OAuth 2.0 parameters.

Parameters

• method (str) – A string representation of the HTTP method to be used.

• url (str) – The resource to be requested.

• bearer_auth (bool) – Whether to use Bearer Authentication or not, defaults to True.

• **req_kwargs (dict) – Keyworded args to be passed down to Requests.

resolve_redirects(resp, req, stream=False, timeout=None, verify=True, cert=None, prox-
ies=None, **adapter_kwargs)

Receives a Response. Returns a generator of Responses.

18 Chapter 3. API Reference

Rauth Documentation, Release 0.7.2

send(request, **kwargs)
Send a given PreparedRequest.

3.1.6 Ofly Sessions

class rauth.OflySession(app_id, app_secret, user_id=None, service=None)
A specialized Session object, wrapping Ofly logic.

This object is utilized by the OflyService wrapper but can be used independently of that infrastructure.
Essentially this is a loose wrapping around the standard Requests codepath. State may be tracked at this layer,
especially if the instance is kept around and tracked via some unique identifier. Things like request cookies will
be preserved between requests and in fact all functionality provided by a Requests’ Session object should be
exposed here.

If you were to use this object by itself you could do so by instantiating it like this:

session = OflySession('123', '456')

You now have a session object which can be used to make requests exactly as you would with a normal Requests
Session instance. This anticipates that the standard Ofly flow will be modeled outside of the scope of this
class. In other words, if the fully qualified flow is useful to you then this object probably need not be used
directly, instead consider using OflyService.

Once the session object is setup, you may start making requests:

r = session.get('https://example/com/api/resource',
params={'format': 'json'})

print r.json()

Parameters

• app_id (str) – The oFlyAppId, i.e. “application ID”.

• app_secret (str) – The oFlyAppSecret, i.e. “shared secret”.

• service (rauth.Service) – A back reference to the service wrapper, defaults to None.

app_id = None
Client credentials.

close()
Closes all adapters and as such the session

delete(url, **kwargs)
Sends a DELETE request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

get(url, **kwargs)
Sends a GET request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

3.1. API 19

Rauth Documentation, Release 0.7.2

get_adapter(url)
Returns the appropriate connnection adapter for the given URL.

head(url, **kwargs)
Sends a HEAD request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

merge_environment_settings(url, proxies, stream, verify, cert)
Check the environment and merge it with some settings.

mount(prefix, adapter)
Registers a connection adapter to a prefix.

Adapters are sorted in descending order by key length.

options(url, **kwargs)
Sends a OPTIONS request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

patch(url, data=None, **kwargs)
Sends a PATCH request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

post(url, data=None, json=None, **kwargs)
Sends a POST request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• json – (optional) json to send in the body of the Request.

• **kwargs – Optional arguments that request takes.

prepare_request(request)
Constructs a PreparedRequest for transmission and returns it. The PreparedRequest has settings
merged from the Request instance and those of the Session.

Parameters request – Request instance to prepare with this session’s settings.

put(url, data=None, **kwargs)
Sends a PUT request. Returns Response object.

Parameters

• url – URL for the new Request object.

20 Chapter 3. API Reference

Rauth Documentation, Release 0.7.2

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• **kwargs – Optional arguments that request takes.

rebuild_auth(prepared_request, response)
When being redirected we may want to strip authentication from the request to avoid leaking credentials.
This method intelligently removes and reapplies authentication where possible to avoid credential loss.

rebuild_proxies(prepared_request, proxies)
This method re-evaluates the proxy configuration by considering the environment variables. If we are
redirected to a URL covered by NO_PROXY, we strip the proxy configuration. Otherwise, we set missing
proxy keys for this URL (in case they were stripped by a previous redirect).

This method also replaces the Proxy-Authorization header where necessary.

request(method, url, user_id=None, hash_meth=’sha1’, **req_kwargs)
A loose wrapper around Requests’ Session which injects Ofly parameters.

Parameters

• method (str) – A string representation of the HTTP method to be used.

• url (str) – The resource to be requested.

• hash_meth (str) – The hash method to use for signing, defaults to “sha1”.

• user_id (str) – The oflyUserid, defaults to None.

• **req_kwargs (dict) – Keyworded args to be passed down to Requests.

resolve_redirects(resp, req, stream=False, timeout=None, verify=True, cert=None, prox-
ies=None, **adapter_kwargs)

Receives a Response. Returns a generator of Responses.

send(request, **kwargs)
Send a given PreparedRequest.

static sign(url, app_id, app_secret, hash_meth=’sha1’, **params)
A signature method which generates the necessary Ofly parameters.

Parameters

• app_id (str) – The oFlyAppId, i.e. “application ID”.

• app_secret (str) – The oFlyAppSecret, i.e. “shared secret”.

• hash_meth (str) – The hash method to use for signing, defaults to “sha1”.

• **params (dict) – Additional parameters.

user_id = None
oFlyUserid

3.1. API 21

Rauth Documentation, Release 0.7.2

22 Chapter 3. API Reference

CHAPTER 4

Upgrade Notes

Notes for upgrading from release to release, if applicable.

4.1 Upgrading Rauth

Rauth is continually being improved upon. Sometimes these improvements require breaking changes from release to
release. Herein we document these changes and steps you can take to port your code to newer releases.

In order to upgrade you may use:

$ pip install -U rauth

or:

$ easy_install -U rauth

4.1.1 Version 0.5.0

This release will bring support for Requests v1.x to rauth. The changes in Requests API are fairly significant and as a
direct result the changes to the rauth API in this release are extensive.

First and foremost Requests v1.x largely does away with hooks (and removes the specific hook rauth was previously
relying on). As such we have completely moved away from the hook infrastructure and have replaced it with custom
Session objects. These objects offer some nice benefits such as keep-alive.

Service wrappers have been restructured to produce instances of their respective Session objects. This is done via the
Session.get_session() and Session.get_auth_session() methods. In particular, get_auth_session
should be used where possible to retrieve an access token over a Session instance. This method returns a session object
which is used to make requests. This is in contrast to previous versions of rauth which provided a request method on
the Service wrappers. This method is now gone and all HTTP methods are provided by the Session objects instead.

OAuth2Service no longer accepts consumer_id and consumer_secret in place of client_id and client_secret. You
must update your code if you were using the old names. This is because the OAuth 2 spec defines these names very
clearly. We had previously used the same names as the OAuth1Service wrapper in order to remain consistent between
wrappers. However this not inline with the spec and has been deprecated since 0.4.x.

Importantly, service wrappers have done away with almost all ad hoc named arguments. This means that grant types,
response codes, and other, often required, OAuth parameters are not provided by default. These were removed be-
cause there were too many special cases and the code became unmanagable. Specifically there are cases where some
parameters are required but others where these parameters become optional: we can’t resonably handle every case in
the library. Instead the consumer should try to manage this themselves by passing in the required parameters explicitly.

23

Rauth Documentation, Release 0.7.2

This is mostly only applicable to OAuth2. That said some of these may be added back in where appropriate. While
porting code, be aware that you must be explicit about these parameters.

Additionally there are changes to Requests itself which are mostly beyond the scope of this document. However it is
worth noting you can parse a JSON response via r.json(). The examples have been updated to demonstrate this.

It may be instructive to reference the examples when updating your applications for use with rauth 0.5.0. There
are examples for OAuth 1.0/a and OAuth 2.0 which should be fully functional and which you can run yourself and
experiment with.

4.2 Rauth Changelog

This provides a list of changes to rauth by release.

4.2.1 Changes in Version 0.7.2

• Fixed encoding of tilde bug in urlencode #186

• Fixed overriding of Content-Type #166

• Allow optional query parameters #175

4.2.2 Changes in Version 0.7.1

• Fixed Requests token saving in headers #137

• Fixed character encoding; all percent-encoded #165

• Added PLAINTEXT signature support #147

4.2.3 Changes in Version 0.7.0

• Made OAuth1 nonces more secure via SystemRandom

• Exposed authentication responses

• Allowed Requests versions >= 1.2.3

• Fixed OAuth1 unicode encoding issues

4.2.4 Changes in Version 0.6.2

• Made OAuth access token name dynamic

4.2.5 Changes in Version 0.6.1

• Updated PyPI metadata.

24 Chapter 4. Upgrade Notes

Rauth Documentation, Release 0.7.2

4.2.6 Changes in Version 0.6.0

• Added Python 3 support (thanks to everyone who contributed, espcially

@sashahart)

• Made service and session objects serializable

4.2.7 Changes in Version 0.5.5

• BUGFIX Fixed upstream CaseInsensitiveDict API changes

• BUGFIX Corrected multiple quoting of oauth_token

4.2.8 Changes in Version 0.5.4

• BUGFIX Corrected adding header to OAuth 2.0 where no access token existed

4.2.9 Changes in Version 0.5.3

• Added an ad hoc check against double signing in OAuth 1.0/a

4.2.10 Changes in Version 0.5.2

• Added ability to pass in key name for get_token methods (excluding raw)

• Added ability to pass in custom decoder for get_token methods (excluding

raw)

• Added better error reporting for get_token methods (excluding raw)

• BUGIFX Corrected assignment of custom signature objects in OAuth 1.0

session objects

• Added custom decoder param for request and access token getters

• Updated test runner to not fail when yanc is missing

• Removed bash requirement from test runner

• Updated documentation to include CHANGELOG

• Updated docstring to correct incorrect documentation

• BUGFIX Corrected improper OAuth 1.0/a handling of entity-methods

4.2.11 Changes in Version 0.5.1

• BUGFIX Added CaseInsensitiveDict to ensure headers are properly updated

4.2. Rauth Changelog 25

Rauth Documentation, Release 0.7.2

4.2.12 Changes in Version 0.5.0

• Added CHANGELOG

• Added requirements.txt

• Updated documentation

• Updated README

• All HTTP methods moved to Session objects

• Added get_session method to service wrappers

• Added get_auth_session method to service wrappers

• Added get_raw_access token to OAuth1 and OAuth2Service

• OAuth2 client_id parameter interpolation moved to OAuth2Session

• Default OAuth parameter setting removed from all wrapper methods

• Default redirect_uri removed from all service wrapper helper methods

• Default response_type removed from OAuth2Service.get_authorize_url

• Default oauth_callback removed from OAuth1Service.get_raw_request_token

• parse_utf8_qsl moved out of all get_raw_* Service wrapper methods

• Default remote_user removed from OflyService.get_authorize_url

• Added Ofly MD5 signing option

• Moved Ofly signing logic into staticmethod on OflySession

• raise_for_status removed from all service wrapper helper methods

• Cleaned up OAuth2Service.get_access_token

• Default basic auth removed from OAuth2Service.get_access_token

• Service wrapper API unified

• hook module removed, replaced by session module

• Added unified Requests Session wrappers for each respective service

• Default connection timeouts moved into Session module logic

• All request injection now happens on Session objects

• Removed examples without correct, functioning credentials

• Test suite completely rewritten for more robust request checking

26 Chapter 4. Upgrade Notes

Python Module Index

r
rauth, 7

27

Rauth Documentation, Release 0.7.2

28 Python Module Index

Index

A
access_token (rauth.OAuth1Session attribute), 14
access_token (rauth.OAuth2Session attribute), 17
access_token_key (rauth.OAuth2Session attribute), 17
access_token_response (rauth.OAuth2Service attribute),

11
access_token_url (rauth.OAuth2Service attribute), 11
app_id (rauth.OflyService attribute), 13
app_id (rauth.OflySession attribute), 19

C
client_id (rauth.OAuth2Service attribute), 11
client_id (rauth.OAuth2Session attribute), 17
close() (rauth.OAuth1Session method), 14
close() (rauth.OAuth2Session method), 17
close() (rauth.OflySession method), 19
consumer_key (rauth.OAuth1Service attribute), 8
consumer_key (rauth.OAuth1Session attribute), 14

D
delete() (rauth.OAuth1Session method), 14
delete() (rauth.OAuth2Session method), 17
delete() (rauth.OflySession method), 19

G
get() (rauth.OAuth1Session method), 14
get() (rauth.OAuth2Session method), 17
get() (rauth.OflySession method), 19
get_access_token() (rauth.OAuth1Service method), 8
get_access_token() (rauth.OAuth2Service method), 11
get_adapter() (rauth.OAuth1Session method), 14
get_adapter() (rauth.OAuth2Session method), 17
get_adapter() (rauth.OflySession method), 19
get_auth_session() (rauth.OAuth1Service method), 9
get_auth_session() (rauth.OAuth2Service method), 11
get_auth_session() (rauth.OflyService method), 13
get_authorize_url() (rauth.OAuth1Service method), 9
get_authorize_url() (rauth.OAuth2Service method), 11
get_authorize_url() (rauth.OflyService method), 13

get_raw_access_token() (rauth.OAuth1Service method),
9

get_raw_access_token() (rauth.OAuth2Service method),
12

get_raw_request_token() (rauth.OAuth1Service method),
9

get_request_token() (rauth.OAuth1Service method), 9
get_session() (rauth.OAuth1Service method), 10
get_session() (rauth.OAuth2Service method), 12
get_session() (rauth.OflyService method), 13

H
head() (rauth.OAuth1Session method), 14
head() (rauth.OAuth2Session method), 17
head() (rauth.OflySession method), 20

M
merge_environment_settings() (rauth.OAuth1Session

method), 14
merge_environment_settings() (rauth.OAuth2Session

method), 17
merge_environment_settings() (rauth.OflySession

method), 20
mount() (rauth.OAuth1Session method), 14
mount() (rauth.OAuth2Session method), 17
mount() (rauth.OflySession method), 20

O
OAuth1Service (class in rauth), 7
OAuth1Session (class in rauth), 13
OAuth2Service (class in rauth), 10
OAuth2Session (class in rauth), 16
OflyService (class in rauth), 12
OflySession (class in rauth), 19
options() (rauth.OAuth1Session method), 15
options() (rauth.OAuth2Session method), 17
options() (rauth.OflySession method), 20

P
patch() (rauth.OAuth1Session method), 15

29

Rauth Documentation, Release 0.7.2

patch() (rauth.OAuth2Session method), 17
patch() (rauth.OflySession method), 20
post() (rauth.OAuth1Session method), 15
post() (rauth.OAuth2Session method), 18
post() (rauth.OflySession method), 20
prepare_request() (rauth.OAuth1Session method), 15
prepare_request() (rauth.OAuth2Session method), 18
prepare_request() (rauth.OflySession method), 20
put() (rauth.OAuth1Session method), 15
put() (rauth.OAuth2Session method), 18
put() (rauth.OflySession method), 20

R
rauth (module), 7
rebuild_auth() (rauth.OAuth1Session method), 15
rebuild_auth() (rauth.OAuth2Session method), 18
rebuild_auth() (rauth.OflySession method), 21
rebuild_proxies() (rauth.OAuth1Session method), 15
rebuild_proxies() (rauth.OAuth2Session method), 18
rebuild_proxies() (rauth.OflySession method), 21
request() (rauth.OAuth1Session method), 16
request() (rauth.OAuth2Session method), 18
request() (rauth.OflySession method), 21
request_token_response (rauth.OAuth1Service attribute),

10
request_token_url (rauth.OAuth1Service attribute), 10
resolve_redirects() (rauth.OAuth1Session method), 16
resolve_redirects() (rauth.OAuth2Session method), 18
resolve_redirects() (rauth.OflySession method), 21

S
send() (rauth.OAuth1Session method), 16
send() (rauth.OAuth2Session method), 18
send() (rauth.OflySession method), 21
session_obj (rauth.OAuth1Service attribute), 10
session_obj (rauth.OAuth2Service attribute), 12
session_obj (rauth.OflyService attribute), 13
sign() (rauth.OflySession static method), 21
signature (rauth.OAuth1Session attribute), 16
signature_obj (rauth.OAuth1Service attribute), 10

U
user_id (rauth.OflyService attribute), 13
user_id (rauth.OflySession attribute), 21

30 Index

	Installation
	Usage
	API Reference
	API

	Upgrade Notes
	Upgrading Rauth
	Rauth Changelog

	Python Module Index

